ALL ABOUT TECHNOLOGY

WHAT IS TECHNOLOGY

Technology is the result of accumulated knowledge and application of skills, methods, and processes used in industrial production and scientific research. technology  is embedded in the operation of all machines, with or without detailed knowledge of their function, for the intended purpose of organization.

The earliest and simplest form of technology is the development of knowledge that leads to the application of basic tools.. The prehistoric invention of shaped stone tools and the discovery of how to control fire increased the sources of food that were available to human beings. The invention of the wheel led to the travelling technologies that helped humans to further increase the yield of food production, travel in less time, and exchange information and raw materials faster. Humanity then progressed to the development of the printing press, the telephone, the computer, and then the Internet.


Etymology

Technology means "science of craft", from Greek Ï„έχνηtechne, "art, skill, cunning of hand"; and -λογία-logia. The use of the term "technology" has changed significantly over the last 200 years. Before the 20th century, the term was uncommon in English, and it was used either to refer to the description or study of the useful arts or to allude to technical education, as in the Massachusetts Institute of Technology (chartered in 1861).

The term "technology" rose to prominence in the 20th century in connection with the Second Industrial Revolution. The term's meanings changed in the early 20th century when American social scientists, beginning with Thorstein Veblen, translated ideas from the German concept of Technik into "technology." In German and other European languages, a distinction exists between technik and technologie that is absent in English, which usually translates both terms as "technology." By the 1930s, "technology" referred not only to the study of the industrial arts but to the industrial arts themselves.[5]


History

Prehistoric

The use of tools by early humans was partly a process of discovery and of evolution. Early humans evolved from a species of foraging hominids which were already bipedal, with a brain mass approximately one third of modern humans. Tool use remained relatively unchanged for most of early human history. Approximately 50,000 years ago, the use of tools and a complex set of behaviors emerged, believed by many archaeologists to be connected to the emergence of fully modern language.

Hominids started using primitive stone tools millions of years ago. The earliest stone tools were little more than a fractured rock, but approximately 75,000 years ago, pressure flaking provided a way to make much finer work.

The discovery and use of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind. The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1 Ma; scholarly consensus indicates that Homo erectus had controlled fire by between 500 and 400 ka. Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.

Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity's progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380 ka, humans were constructing temporary wood huts. Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200 ka and into other continents such as Eurasia.

Neolithic

Human's technological ascent began in earnest in what is known as the Neolithic Period ("New Stone Age"). The invention of polished stone axes was a major advance that allowed forest clearance on a large scale to create farms. This use of polished stone axes increased greatly in the Neolithic, but were originally used in the preceding Mesolithic in some areas such as Ireland. Agriculture fed larger populations, and the transition to sedentism allowed simultaneously raising more children, as infants no longer needed to be carried, as nomadic ones must. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer economy.

With this increase in population and availability of labor came an increase in labor specialization. What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role.

Continuing improvements led to the furnace and bellows and provided, for the first time, the ability to smelt and forge gold, copper, silver, and lead  – native metals found in relatively pure form in nature. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 10 ka). Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BCE). The first uses of iron alloys such as steel dates to around 1800 BCE.

Ancient

Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailing ship; the earliest record of a ship under sail is that of a Nile boat dating to the 8th-millennium BCE. From prehistoric times, Egyptians probably used the power of the annual flooding of the Nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and "catch" basins. The ancient Sumerians in Mesopotamia used a complex system of canals and levees to divert water from the Tigris and Euphrates rivers for irrigation.

According to archaeologists, the wheel was invented around 4000 BCE probably independently and nearly simultaneously in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture) and Central Europe. Estimates on when this may have occurred range from 5500 to 3000 BCE with most experts putting it closer to 4000 BCE. The oldest artifacts with drawings depicting wheeled carts date from about 3500 BCE; however, the wheel may have been in use for millennia before these drawings were made. More recently, the oldest-known wooden wheel in the world was found in the Ljubljana Marsh of Slovenia.

The invention of the wheel revolutionized trade and war. It did not take long to discover that wheeled wagons could be used to carry heavy loads. The ancient Sumerians used the potter's wheel and may have invented it. A stone pottery wheel found in the city-state of Ur dates to around 3429 BCE, and even older fragments of wheel-thrown pottery have been found in the same area. Fast (rotary) potters' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources. The first two-wheeled carts were derived from travois and were first used in Mesopotamia and Iran in around 3000 BCE.

The oldest known constructed roadways are the stone-paved streets of the city-state of Ur, dating to circa 4000 BCE and timber roads leading through the swamps of Glastonbury, England, dating to around the same time period.The first long-distance road, which came into use around 3500 BCE, spanned 1,500 miles from the Persian Gulf to the Mediterranean Sea, but was not paved and was only partially maintained. In around 2000 BCE, the Minoans on the Greek island of Crete built a fifty-kilometer (thirty-mile) road leading from the palace of Gortyn on the south side of the island, through the mountains, to the palace of Knossos on the north side of the island. Unlike the earlier road, the Minoan road was completely paved.

Ancient Minoan private homes had running water. A bathtub virtually identical to modern ones was unearthed at the Palace of Knossos. Several Minoan private homes also had toilets, which could be flushed by pouring water down the drain. The ancient Romans had many public flush toilets, which emptied into an extensive sewage system] The primary sewer in Rome was the Cloaca Maxima; construction began on it in the sixth century BCE and it is still in use today.

The ancient Romans also had a complex system of aqueducts, which were used to transport water across long distances. The first Roman aqueduct was built in 312 BCE. The eleventh and final ancient Roman aqueduct was built in 226 CE.Put together, the Roman aqueducts extended over 450 kilometers, but less than seventy kilometers of this was above ground and supported by arches.

Medieval

Innovations continued through the Middle Ages with innovations such as silk-manufacture (introduced into Europe after centuries of development in Asia), the horse collar and horseshoes in the first few hundred years after the 5th-century fall of the Roman Empire. Medieval technology saw the use of simple machines (such as the lever, the screw, and the pulley) being combined to form more complicated tools, such as the wheelbarrow, windmills and clocks, and a system of universities developed and spread scientific ideas and practices. The Renaissance era produced many innovations, including the printing press (which facilitated the communication of knowledge), and technology became increasingly associated with science, beginning a cycle of mutual advancement. Advances in technology in this era allowed a more reliable supply of food, followed by the wider availability of consumer goods.

Modern

Starting in the United Kingdom in the 18th century, the Industrial Revolution was a period of great technological discovery, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, driven by the discovery of steam power and the widespread application of the factory system. Technology took another step in a second industrial revolution (c.  1870 to c.  1914) with the harnessing of electricity to allow such innovations as the electric motor, light bulb, and countless others. Scientific advances and the discovery of new concepts later allowed for powered flight and developments in medicine, chemistry, physics, and engineering. The rise in technology has led to skyscrapers and broad urban areas whose inhabitants rely on motors to transport them and their food supplies. Communication improved with the invention of the telegraph, telephone, radio and television. The late-19th and early-20th centuries saw a revolution in transportation with the invention of the airplane and automobile.

The 20th century brought a host of innovations. In physics, the discovery of nuclear fission has led to both nuclear weapons and nuclear power. Computers were invented and later miniaturized using transistors and integrated circuits. Information technology, particularly the optical fiber and optical amplifiers that led to the birth of the Internet, which ushered in the Information Age. Humans started to explore space with satellites (late 1950s, later used for telecommunication) and in crewed missions (1960s) going all the way to the moon. In medicine, this era brought innovations such as open-heart surgery and later stem-cell therapy along with new medications and treatments using genomics.

Complex manufacturing and construction techniques and organizations are needed to make and maintain some of the newer technologies, and entire industries have arisen to support and develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education – their designers, builders, maintainers, and users often require sophisticated general and specific training. Moreover, these technologies have become so complex that entire fields have developed to support them, including engineering, medicine, and computer science; and other fields have become more complex, such as construction, transportation, and architecture.


0 Comments